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Islands in three-dimensional steady flows 
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We consider the problem of steady Euler flows in a torus. We show that in the 
absence of a direction of symmetry the solution for the vorticity contains &-function 
singularities a t  the rational surfaces of thc torus. We study the effect of a small but 
finite viscosity on these singularities. The solutions near a rational surface contain 
cat’s eyes or islands, well known in the classical theory of critical layers. When the 
islands are small, their widths can be computed by a boundary-layer analysis. We 
show that the islands at  neighbouring rational surfaces generally overlap. Thus, 
steady toroidal flows exhibit a tendency towards Beltramization. 

1. Introduction 
The existence and structure of steady solutions of the Eulcr equations of fluid flow 

have been the subject of interesting papers by Arnol’d (1974) and Moffatt (1985, 
1986). In  these papers, the analogy between the Euler equations for steady flow of 
an inviscid, incompressible fluid and the equations for magnetostatic equilibria of a 
perfectly conducting plasma provides the basis for certain deductions on the 
fundamental properties of three-dimensional Euler flows. Invoking the principle of 
relaxation of magnetic fields to states of minimum energy (well known in plasma 
physics, and first stated by Kruskal & Kulsrud 1958), Moffatt has shown, by means 
of topological arguments in certain special examples, how current sheets may 
develop in ideal plasmas. By analogy, vortex sheets may develop in Euler flows. 
Moffatt has motivated these studies with the speculation that ‘insofar as viscous 
effects may be neglected, Euler flows may be regarded as fixed points in the function 
space in which unsteady solutions of the Euler equations evolve, and, even if these 
fixed points are unstable, their location in function space may provide valuable clues 
concerning the structure of turbulent flow ’ (Moffatt 1985). 

In  this paper, we consider steady, three-dimensional flows in a torus without a 
continuous symmetry. Since the subject of this paper was inspired in part by the 
analogy between magnetostatics and Euler flows, it is natural t o  consider the 
problem of Euler flows in the geometry of a torus. The existence and structure of 
magnetostatic equilibria has been an important subject of research for plasma 
physicists over two decades (Grad 1967), and it is interesting to examine the 
implications of certain known results on toroidal plasma equilibria for analogous 
Euler flows (Hegna & Bhattacharjee 1990). It is known that if a direction of 
symmetry exists, the magnetostatic equilibria are characterized by a set of nested 
toroidal surfaces. On each surface, the plasma pressure is constant and the magnetic 
field line is constrained to remain on the toroidal surface. If the symmetry is lost, the 
equilibria contain current sheets. The analogous three-dimensional Euler flows 
contain vortex sheets. 

Apart from the analogy between magnetostatics and Euler flows, there is a deeper 
physical reason which makes the study of toroidal Euler flows interesting in its own 
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right. The reason for considering toroidal Euler flows is that the vortex singularities 
have a simple spatial structure and occur a t  rational (or resonant) surfaces of the 
torus, which is where our intuition on dynamical systems leads us to expect them. In 
fact, once the appropriate representation for the velocity u is written down, it is 
straightforward to give a rigorous demonstration of the existence of singularities in 
the component of the vorticity o( E V x u )  aligned with u. These vortex singularities 
can be represented by &functions ( $ 2 ) .  

While the proof of existence of the vortex singularities settles an important point 
of principle, the presence of a small but finite viscosity has a profound effect on these 
vortex sheets. In  the presence of viscosity, the singularities in the vorticity are 
resolved, and their amplitudes can be determined by a boundary-layer analysis of the 
steady Navier-Stokes equation. The boundary-layer method we use is reminiscent of 
the nonlinear theory of critical layers in which the presence of viscosity (or 
nonlinearity) can regularize a singularity in the exterior-region solution (Benney & 
Bergeron 1969; Haberman 1972). However, the geometry of a torus introduces 
certain interesting features not present in earlier analyses. One of the main features 
is that the toroidal problem is intrinsically three-dimensional, which naturally brings 
in issues pertaining to the non-integrability of the Hamiltonian for the velocity field. 

The analytical solutions contain cat’s eyes (hereafter referred to as islands) a t  
rational surfaces. If the islands are not too large, their widths can be computed under 
certain simplifying approximations ($3) .  I n  the neighbourhood of a particular 
resonant surface, we solve the steady-state equation under the assumption that the 
effect of other non-resonant terms may be neglected. This approximation, which is 
standard in most perturbative studies of nearly integrable Hamiltonian systems, is 
valid if the internal separatrices of the torus are sufficiently well separated in space. 
A similar approximation has been used recently by Childress & Soward (1989) in an 
interesting study of a family of cat’s eye flows. 

Our asymptotic expression for the island width near a resonant surface leads us 
to a striking conclusion regarding the topological structure of generic steady three- 
dimensional toroidal flows. We show that it is generally impossible to avoid overlap 
of islands on neighbouring rational surfaces in a t’orus ($4). Though the destruction 
of KAM (Kolmogorov-Arnol’d-Moser) surfaces cannot be described within our 
mathematical framework, Chirikov’s criterion of stochasticity (Chirikov 1979) 
suggests that ergodization of streamlines (and vortex lines) will occur under these 
conditions. 

These results were reported briefly in our recent contribution to the Proceedings 
of the IUTAM Symposium held in Cambridge (United Kingdom), 13-18 August, 
1989 (Hegna & Bhattacharjee 1990). Readers interested in a comparative description 
of our results on magnetostatic equilibria and Euler flows are referred to that paper. 
The details of the calculation of three-dimensional magnetostatic equilibria in 
toroidal geometry have been published previously (Hegna & Bhattacharjee 1989). 
Here we give the details of the analysis which led to the conclusions on steady Euler 
flows reported a t  the IUTAM Symposium. 

2. Vortex singularities in steady toroidal Euler flows 

by the equations 
Steady flows of an inviscid, incompressible fluid of constant density are described 

u x w  = Vh, (1) 

v x u = o ,  ( 2 )  
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v - u  = 0, (3) 
where u is the fluid velocity, w is the vorticity, and h = p / p + # ~ 1 ~  is the Bernoulli 
function for a fluid of pressure p and constant density p. Equations (1)-(3) are also 
the equations of magnetostatics in which the analogous variables are the magnetic 
field, B t ,  u, the current density, J -  w ,  and the plasma pressure p t, h,- h, where h, 
is a constant. Kruskal & Kulsrud (1958) have derived a number of useful properties 
of (1)-(3). In  particular, if h is a smooth function and not constant in any small 
region, the local surfaces of h determine a family of surfaces which according to (l) ,  
are ‘stream (vortex) surfaces’ in that they are made up of ‘stream (vortex) lines’. If 
such a surface lies in a bounded volume of space, and if either u or w vanishes 
nowhere on it, then it must be topologically toroidal (Kruskal & Kulsrud 1958; 
Moffatt 1988). 

We now introduce a curvilinear coordinate system that has been used to represent 
magnetic fields in magnetostatic equilibria (Greene & Johnson 1961 ; Boozer 1981). 
In order to keep this paper self-contained, we derive this representation from first 
principles in Appendix A. The nested surfaces are labelled radially by a (single- 
valued) function @ such that u - V @  = 0. For convenience, we take @ to be a measure 
of the toroidal flux of u. Each surface is parameterized by a poloidal angle 0 and a 
toroidal angle $ which increases by 2~ for each transit of a streamline in the poloidal 
and toroidal directions respectively. In the coordinate system (@, 8, $), the velocity 
u can be represented in the contravariant form 

(4) 
where t=t(@) is the rotational transform of the velocity field. The rotational 
transform measures the twist of the streamline and is an invariant on each stream 
surface. We assume that t is a smooth function of @. Since t is continuous, the set 
of values @ for which t is rational is of measure zero. There are closed field lines near 
every point in the domain, but the set of points that are actually on closed field lines 
has zero measure. From ( 1 )  and (4), it then follows that h = h(@) .  Equation (4) is 
reminiscent of the well known Clebsch representation for divergence-free vector 
fields. Alternatively, a covariant basis can also be used to represent u in the form, 

( 5 )  
This representation satisfies identically w .  Vh = 0 ,  required by (1) .  The Jacobian 
9 = (V@-V0  x V$)-l can be obtained from the scalar product of (4) and ( 5 ) ,  

u = V @  x V(O-t$),  

= g(@) v$+I(@)  ve+p(@, B,  $1 v@. 

All single-valued functions of position in the torus can be expressed as a Fourier 

(7) 

sum. In particular, 

f = C 9 mn (@)eime-inC 
m, n 

where m and n are integers. From (l) ,  we get 

V h x u  
WI = - 

u2 ’ 

where the subscript I refers to the direction perpendicular to u. Since h = h(@) ,  we 
get, using (5) and (6), 

(9) 
9 wI = --h‘w x (gve+zv$), 
Y 
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where prime denotes derivative with respect to @. We write the vorticity aligned 
with u as 

= Qu, (10) 

where Q is represented by the Fourier series 

Equation (2) implies V - o  = 0, which is a relation between o1 and oil. This relation 
gives 

The amplitude Qoo cannot be determined from (12), but can be calculated by fixing 
an additional global constraint, such as the total toroidal flux of the vorticity. The 
general solution of (12) is given by 

where Q = Or at the resonant (or rational) surface t = n / m .  At a rational surface, 
the streamlines do not fill a surface ergodically, but close on themselves after m 
poloidal and n toroidal transits. The presence of the singularity in Q,, can be 
anticipated by noting that the differential equation u . V Q  = - V . w ,  is singular a t  a 
rational surface because the operator u-W is not invertible at such a surface. 

Equation (13) shows that Q,  and hence o,,, is singular a t  a rational surface. 
Singularities appear in the first and third terms of (13), but both singularities are 
integrable. The amplitude Q,, of the &function singularity cannot be determined 
from the local inversion of (1)  described above. Additional physical constraints, 
specified in $3, determine Qmn. 

Before concluding this section, we remark on the possibility of generating the 
singular solutions (13) by the ‘magnetic relaxation ’ method (Kruskal & Kulsrud 
1958; Bauer, Batancourt & Garabedian 1978; Moffatt 1988). If the initial state is a 
magnetic field (without symmetry) which lies on topologically toroidal surfaces, the 
final equilibrium state generated by the relaxation method should contain 
singularities of the type considered in this paper. The strength of the singularity can 
be determined, in principle, from the initial conditions. A physically meaningful way 
of specifying initial conditions is to  specify certain invariants of motion. 

The relaxation method has been numerically implemented in calculating three- 
dimensional toroidal magnetostatic equilibria by plasma physicists (Bauer et al. 
1978; Hirshman & Whitson 1983; Bhattacharjee, Wiley & Dewar 1984; Lao et al. 
1985). In  practice, it is difficult to track singularities in a computer code even when 
it is known where they are expected to occur ! In most computer codes, the presence 
of ‘ numerical ’ dissipation or truncation errors regularize singular solutions (see, for 
instance, Lao et al. 1985). 

3. Resolution of the vortex singularities 
Though the formation of vortex singularities in an ideal fluid is a matter of 

fundamental interest, in practice the presence of even a small but finite viscosity will 
regularize these singularities. Far from a rational surface (‘exterior region ’), what 
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appears to be a d-function singularity is resolved by the effect of a small viscosity 
which makes its presence felt in the close neighbourhood of the rational surface 
(‘interior region ’). The appropriate mathematical tool to use is boundary-layer 
theory in which ol, in the exterior region is given by (13), and the interior region is 
localized at a particular rational surface where we solve (1) by a different method. The 
asymptotic matching between the exterior and interior regions determines Q,, , the 
amplitude of the d-function singularity in wI,. 

Before we proceed with the details of the boundary-layer analysis, we illustrate the 
formation of islands by means of a simple example. Consider a straight periodic 
cylinder. An integrable velocity field is given by 

(14) 

where the azimuthal velocity u, and the axial velocity u, are functions of the radius 
r only, 5 = z/R, and 2nR is the periodicity length of the cylinder. The equation for 
the streamline is given by 

u, = u,(r) i+u, ( r )  t, 

where 7 is a time-like coordinate which parameterizes points along the streamline. If 
u, 9 0, it is convenient to choose y as the time-like coordinate. Equation (15) can 
then be written 

where 52 = Ru,/ru, is a function of r only. The streamlines lie on surfaces of constant 
r .  On a given surface the twisting of a streamline is given by 0 = Qy+O,, for some 
initial condition 0([ = 0) = 0,. 

Now suppose a symmetry-breaking field u1 = ul(r ,  me-ng) is imposed on the 
velocity field given by (14), with the radial projection of u, given by 

u, = urn, sin (me-ny).  (17) 

Note that in the presence of this perturbation the system is still integrable because 
an ignorable coordinate remains. If lull < I u , ~ ,  a new function that can label stream 
surfaces can be obtained from perturbation theory. We seek functions x such that 
u-Vx = 0, where 

u = u,+ul, x = r + x E n X n ,  
n 

and E = Ju,J/Iu,J. To first order in E ,  we get 

U,.VX1+U, = 0. 
Equation (18) gives 

if 52 + n/m. Away from the rational surfaces, the stream surfaces are slightly 
distorted but remain nested. However, near 52 = n/m,  the small denominator creates 
large excursions in x ,  and the expansion given above is no longer valid. To rectify this 
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problem, we must solve for x by a different method. Consider the streamlines when 
ule 6 u, and ulZ 4 U, ; we get 

dr  - u,, sin (me - n5) 
9 z- u, 

de - 
d5 = 

If the time-like coordinate is redefined as 7 = O-nc/m, then 

dr - u,, sin (m7) 
d7 uB/r - nu,/mR 
- _  

It follows that streamlines must obey the condition 

s U 
drl-(Q-n/m) = Irz d7sin (m7). 

Suppose that a t  some value of r ( r  = T o )  in the cylinder, Q(ro)  = n/m. In the vicinity 
of r = ro, assume u,,/u, varies slowly, whence (22) can be written as 

drQ’(r-ro) = ~ s d r  sin (m7), s u, 

where Q‘ = dQ/dr at r = ro. Upon integrating this equation, the trajectories of the 
streamline near r = ro are found to lie on level surfaces of a new function E,  given by 

A Poincar6 plot in the (r,O)-plane at  5 = 0 formed by successive transits of 
a streamline in a periodic cylinder shows that initial points given by r = ro, 
sin (m7) = 0 are period-m fixed points. Near r = yo, cos (m7) = - 1, for i2‘ > 0 
trajectories execute elliptic orbits around the local axis of the island labelled by Ea 
= -Ru,,/mnz, whereas the points r = ro, cos (m7) = 1 are hyperbolic fixed points. 
The surface Ez = Ru,,/mu, describes the separatrix. The island half-width is given 

w,, = 2(Rum,/mi2’u,)~. (25) 
by 

In the presence of incommensurate helical perturbations, islands grow at  different 
rational surfaces. Roughly speaking, if these islands are large enough to overlap, no 
stream function exists. In this paper, the occurrence of overlapping islands will be 
taken to imply that the velocity field lines are chaotic in the domain (Chirikov 1979). 

The qualitative features of the simple example given above will reappear in the 
boundary-layer analysis that follows. Note that in (17), the perturbation is imposed 
arbitrarily without any consideration of how the fluid may generate such a 
perturbation. I n  the toroidal analysis to follow, the perturbation is self-consistent in 
that it obeys the steady Navier-Stokes equation. 

3.1. The exterior region 

In the torus, we consider the formation of a single island a t  the surface t = n,/m,. 
It is convenient to transform to the new angle coordinates 
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We introduce a new function $ in the representation of the velocity field u,  which is 
written as 

(28) u = U@ x Vol+V< x V$. 

The function $ is represented by the Fourier series 

where d$,/d@ = t- n,/m,. We are primarily concerned with the Fourier component 
of $ resonant with a. We define the average 

for any function f. At the resonant surface defined by t(@,) = n,/m,, the singularity 
in the vorticity causes a discontinuity in the exterior solution of A, measured by the 
parameter 

As it stands now, A’ includes all values of m and n such that n/m=n,/m,. 
(Eventually, we will use the single-harmonic approximation, in which the ampli- 
tude corresponding to m = m,, n = n, dominates over all others.) By integrating (2), 
V x u  = o, across a resonant surface, we can obtain a relation between A’ and 
the singularity amplitude Qmn. Using the representation (28) in (2), and projecting (2) 
along ec = ax/aC, we note that the dominant contribution to the left-hand side of (2) 
comes from the second derivative of $ with respect to @. Hence, we get 

U @ . V @ a i A  = WeeC, (32) 

A ’ A  = GQ, (33) 

where a, f = i3f/ax. Integrating (32) across the rational surface, and averaging, we get 

eikm,a where 6 = Qkm,. kn, 
k 

and 

(34) 

(35) 

3.2. The interior region 

As in the simple example a t  the beginning of this section, we shall obtain an 
expression for the invariant function $ which is valid in the interior region. This can 
be done by a straightforward application of perturbation theory, neglecting the 
coupling between the islands on different rational surfaces (Cary &, Littlejohn 1983; 
Cary & Kotschenreuther 1985; Hegna & Bhattacharjee 1989). The result is 

$r = (t-n,/m,)d@- CAk(@)eikmra, (36) s k 

which, upon using the single-harmonic approximation, reduces to 

$ =$t’xz-A(@)cos(m,a), (37) 

where x = @-@, and A ( @ )  = &41(@)+A-l(@)]. The dominant structure in the 
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interior region is the cat's eye or island. The island half-width in terms of the variable 
@ is 

6@ = 2IA,/t'li, (38) 

where A ,  is the value of A at  the separatrix, and we have neglected the variation of 
A with @ over the island width. By normalizing 6@ to the local shear length l /k' ,  

the island half-width in terms of the extent of the rotational transform is 

6% = 21A,,'li. (39) 

Viscosity enters the analysis of the interior region via the steady-state 
Navier-Stokes equation, which can be written as 

u x o = V h -  vV'U, (40) 

u*Vh = V(V2h-w2). (41) 

where v is the coefficient of kinematic viscosity. The projection of (40) along u gives 

Integrating (41) over a volume bounded by streamlines, we get the solubility 
condition 

Equation (42) is a statement of the conservation of energy in steady state (see, for 
instance, Landau & Lifshitz 1986). Since the flow is steady, the time-rate of change 
of the kinetic energy must vanish. Hence, energy dissipation within the volume must 
be balanced by energy flux through the boundary. Since the volume is bounded by 
streamlines, and no transfer of fluid mass into the volume can occur, the energy flux 
due to internal friction must balance the viscous dissipation. 

We now proceed with the analysis of the interior region, in which the functions h 
and Q are determined from the boundary-layer equations. It is convenient to 
introduce the bracket, defined by 

v d7 (V2h-w2) = 0. (42) s 

[B,C]  G a,Ba,C-a,Ca,B. (43) 

The algebraic properties of the bracket are discussed in Appendix B. The condition 
u-Vh = 0 which strictly holds for Euler flows, also holds approximately for 
Navier-Stokes flows as long as v is small. (Formally, one might imagine writing a 
perturbation expansion for each undetermined function in powers of the viscosity ; 
the above condition is then the leading-order approximation to the projection of the 
Navier-Stokes equation along u. )  Hence, we get 

a , h + [ @ , h ]  = 0. (44) 

i n  the small-island approximation, h is a function of @ and a alone. Therefore, (44) 
implies that h = h(@). The perpendicular vorticity, 

V h x u  
WI = - 

U 2  

(where u = lul), and the parallel vorticity, 

U - W  
Q = -  

U2 

are related to each other by the equation V - o  = 0, whence 

(45) 
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Averaging over the angle 5, and noting that u.ec = y and y/u2 = $, we can write (47) 
in the form 

[$, Q-hf ]  = 0. (48) 

Q = h’f+f($ . ) ,  (49) 

Equation (48) has the general solution (Appendix B) 

where f($) is an as yet undetermined function. To determine the function f(@), we 
now use the solubility condition (42). Though the technical details are somewhat 
different, the procedure is similar to that of Benney & Bergeron (1969). The integral 
in (42) is taken over a shell bounded by flux surfaces @ and $+S@. We get 

Since the integrand is nearly constant across the infinitesimal thickness S$, the 
integrand over $ is trivial. Defining the angle average 

n 

(50) reduces to 

( Q 2 )  = (T V2h )-(($yVh.Vh). 

From (49) and (52), it is possible to determine the function f($), and hence &, the 
parallel vorticity profile. The result is 

Q = h’($l)f:(z-<z))+{((%/Y)V2h)-(h’f:)2[(x2) (1+P)-(s)21P. (53) 

Here, we have approximated f by the Taylor-series expression f x f o  + f ;  x, and 
f o  where f :  are, respectively, the values off  and its derivative with respect to @ 
at the rational surface. The term p in (53) is given by 

P = (fo*’/7f;)21v@12. (54) 

Equation (53) can be simplified further if we assume that the island width is small. 
Formally, we introduce a small parameter A = &@/ao < 1, where S@ is the island half- 
width and Q0 represents a characteristic equilibrium scale. We also define the 
dimensionless quantity /3 = 2h/u2, where u is a typical value of the equilibrium flow, 
and h is the spatially varying part of Bernoulli’s function. In (53), the following 
ordering holds: Yo, &, y ,  and p are O( l) ,  (x) and x are O(h) ,  and h is O(/3/A). From 
this ordering, we see that in (53), the first term under the square root scales as (p/A)i, 
whereas all other terms scale as p. As long as (PA): < O ( l ) ,  the term proportional to 
(V2h)i dominates all other terms. (If we take the ordering - O(1) or /?A S 0 ( 1 ) ,  
it can be shown, a posteriori, that contradictions with the approximation A 4 1 
occur.) Hence, (53) simplifies to 

Q x (A Y (V2h))t, (55) 

where the negative root is neglected because it leads to unphysical solutions for the 
island width, obtained in $4. 
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The inequality (PA); < 1 may seem to  allow for the possibility that p can be large 
for h < 1. However, as we demonstrate in $4, the requirement, that h 4 1 imposes the 
further constraint that p itself be small. 

The h-profile in the inner region can be determined in general by specifying the 
sources a t  steady state, not considered here. When there are no sources of pressure 
within the island region, the h-profile is approximately constant within the island 
separatrix. Far from the island, the h-profile must, of course, match smoothly to the 
exterior profile. Our qualitative conclusions do not depend on the global details of the 
h-profile. 

We now carry out the asymptotic matching procedure between the exterior and 
interior solutions. In  the interior region the matching parameter A’ is defined by the 
relation 

Under the assumption that the island width is small ( A  < l ) ,  (2) reduces to 

i3: A = GQ, (57) 

where G is defined by (35). Using the single-harmonic approximation, and neglecting 
the variation of A over the width of the island, we get 

From (55)-(58), we obtain 
A’A = (&);(ID, kl);, 

where D,=- h’G $0 

*‘ ’ 

is a dimensionless function, and k is a definite integral of order unity 

4. Island equation 
The amplitude of the island can be obtained analytically by solving (2) in the 

exterior region. We do so under the approximation that the stream surfaces are 
nearly circular in cross-section, and can therefore be labelled by the cylindrical radius 
r .  This approximation, which is reasonable for low-/3 fluids, decouples the different 
helicities and enables us to write (2) as 

where R is the length of the cylinder and r = rm+, fixes the position of the rational 
surface. Equation (61) can be solved by using the appropriate Green’s function 
solution (Cary & Kotschenreuther 1985), 

where Im a,nd K ,  are the modified Bessel functions, r( = min ( r ,  r ‘ ) ,  and r )  = 
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max ( r ,  r ’ ) .  The integrals obtained can be evaluated asymptotically, and the resonant 
amplitude is given by 

where 

As in the simple example, the island half-width, written in units of the rotational 
transform, is given by 

From (63)-(65), we obtain the algebraic relation 

at = 2 IAmrn,t’lf. (65) 

(66) ‘ ( 1  

mr 
(&)2 = 4c+ (&t )a - ,  

where q = ID,kl:Idlnt/drl. We now note that the term C in (66) scales with the 
resonant Jacobian amplitude which, for low-p systems, decays exponentially rapidly 
with mode numbers m and n (Cary & Kotschenreuther 1985). Neglecting Cin (66), we 

(67) 
obtain 

at = (q/m$. 

We check, a posteriori, that the term C is of order (/?)f($mrnr/$oO) smaller than the 
other terms in (66) and hence subdominant. 

The scaling of 6t with m has an important consequence for the topological 
stability of steady toroidal flows. The mean density of islands is given by dN/dt z 

for islands with mode number m, < M (Cary & Kotschenreuther 1985). Island 
overlap will occur when Gt(dN/dt) exceeds 2/n (Chirikov 1979). From (67), it follows 
that for generic flows overlap of the islands with m = 1 to M is unavoidable, and will 
occur for values of M which obey the condition M 2 q-:. (Note that island overlap 
would not necessarily have occurred if St decayed exponentially with mr.) Though 
the analysis presented here clearly breaks down when island overlap actually occurs, 
Chirikov’s criterion leads us to believe that ergodization of the streamlines will occur 
under these conditions. From the relation u* Vh = 0, we know that the ergodization 
of streamlines will tend to eliminate spatial gradients in h. Hence, it appears that the 
Beltrami state V x u = cru with constant cr is the only physically realizable steady 
low-p flow in a three-dimensional torus (without symmetry). This intrinsic fragility, 
which we associate with island overlap, is consistent with Moffatt’s conjecture that 
‘ a three-dimensional flow of any significant complexity is in general unstable ’, 
though the word ‘instability ’ should be interpreted a little differently in our context. 

5. Discussion 
In this paper, we have considered the problem of steady-state solutions to the 

Euler equations in a torus without a direction of continuous symmetry. For a 
configuration with nested toroidal surfaces, we show that the component of vorticity 
o parallel to the velocity u contains &function singularities at the rational surfaces. 
After demonstrating the occurrence of tangential discontinuities in a three- 
dimensional toroidal equilibrium, we have considered the effect of a small but finite 
viscosity on these singularities. By means of a boundary-layer analysis, subject to a 
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few simplifying assumptions, we have obtained an expression for the island width 
when it is small compared with the characteristic equilibrium scale length. The 
expression for the island width leads to the striking conclusion that the islands 
inevitably overlap for generic flows. Since we expect that stochasticity will occur 
when islands overlap, the condition u.Vh = 0 then requires that h be a constant over 
the region of stochasticity. Thus, steady three-dimensional toroidal flows, when they 
are physically realizable, would tend to be Beltrami-like. 

The results of our study are not directly applicable to the problem of finite-time 
singularities in solutions of the time-dependent Euler equations. Our study of the 
steady-state problem does indicate that one should look for such singularities a t  the 
separatrices of the flow. In  a torus these separatrices have a very simple structure, 
which is why we find them easily. However, numerical studies of three-dimensional 
fluid turbulence involve flows of considerable topological complexity, and the 
identification of the separatrices in such flows is a non-trivial task. Even after the 
separatrices of the flow are identified, there remains the difficulty of numerically 
resolving the singularities. This continues to be an area of ongoing research (see, for 
instance, Pumir & Siggia 1990 and Kerr & Hussain 1989). 

As quoted earlier, Moffatt has conjectured that Euler flows with tangential 
discontinuities may be regarded as fixed points in the function space in which time- 
dependent solutions of the Euler equations evolve. Though our work says nothing 
about this conjecture, it does suggest that if the conjecture is true, Beltramization 
of the flow will tend to occur. Recent simulations of decaying isotropic turbulence 
seem to confirm a certain tendency to Beltramization, but this does not seem to 
necessarily drive the depression of the mean-square value of the nonlinear term 
{ l u ~ o - V h 1 } ~  in the Navier-Stokes equation (Kraichnan & Panda 1988). It is 
possible that the mechanism of island overlap presented in this paper may 
Beltramize turbulent flows, even if these flows may never be strictly steady state. 

The authors would like to thank Eliot Dresselhaus for carefully reading the 
manuscript. This work is supported by the US Department of Energy Grant No. DE- 
FG0286ER-53222. We thank Professor G. K. Batchelor and the referees for bringing 
to our attention some of the relevant literature, and for thoughtful criticism which 
helped improve the presentation. 

Appendix A. Coordinate system 
The coordinate system used in this paper was introduced and developed by Boozer 

(1981, 1983) as a convenient way to represent magnetic fields in toroidal equilibria. 
Because of the mathematical analogy that exists between the magnetostatic 
equations and the Euler equations for steady flow in an incompressible, inviscid fluid, 
these coordinates also prove useful for carrying out the calculations in this paper. 

The representations (4) and ( 5 )  can be derived as follows. Let u be a velocity field 
in a toroidal equilibrium that satisfies the condition u.V@* = 0 for some single- 
valued function @*. The angles 8* and # represent the poloidal and toroidal angles 
of the torus, such that at a fixed @*, the pair of angle coordinates ( # , O * )  and 
(# f 2xn, 8* + 27cm) represent the same physical position for all integers n and m. As 
long as V@*-V8* x V# remains finite, @*, 8*, and # can be used as coordinates 
(Boozer 1981). Any vector field can be written as 

u = aV@* x we* + bV# x w@* +ewe* x v#. (A 1) 
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The condition u.V@* = 0 requires c = 0. Incompressibility implies that a and b can 
be written as 

(A 2) a = a,(@*)+a,-, af b = bo(@*)-aog, af 
a8* 

where f =f(@*,8*,#) (Boozer 1981). By defining @ = Sa,d@*, @ = Sb,d@*, and 
8 = 8*+f, equation (A 1) can be written 

u = V@ x V(8-t@), (A 3) 

where 

is the rotational transform. The toroidal velocity flux enclosed by a constant-@ 
surface is 2n@, and the poloidal velocity flux outside a constant-@ surface is 2n@, 

Using @, Bt, and q5t as the basis, a covariant representation for the velocity field can 
be written, 

If a solution to the Euler equations exists, h must be a function of @ alone. From the 
condition V x u.  Vh = 0, we obtain the relation 

u = aV$t + yVBt +PtV@. (A 5 )  

The functions a and y can then be written in the form 

aV 
Wt 

a = g(@)+(g+tI)-, 

where v = v(@,@,gt). Equation (A 5 )  can now be written 

Let 8 = B t + t v ,  and q5 = q 5 t + ~ ,  so VBt = VB-tVv-v(dt/d@)V@ and V$t = 
Vq5-Vv. The transformation from 8t, q5t to 8, q5 does not change the representation 
(A 3), but allows (A 5 )  to be written in the form 

u = gVq5+IV8+/3(@,8,q5)V@, (A 10) 

where /3 = /3+ - ( g  + tI) (av/a@) - vI(dt/d@). The total toroidal vorticity inside a flux 
surface is given by 2nI, while the poloidal vorticity outside a flux surface is 2ng. 
A velocity field, one that does not necessarily lie on nested surfaces, can be written 

as 

(Boozer 1983; Bhattacharjee 1984). To demonstrate this, let V, 8, and q5 be 
coordinates, where V is a label of an arbitrarily defined toroidal surface, while 8 and 
q5 are the poloidal and toroidal angles parameterizing the torus, with VV- V8 x Vq5 
finite. An arbitrary velocity field can be written 

u = V@XV~+V~~XV@(@,B,~~) (A 11) 

18 

(A 12) 
a@ a@ 
av av u = - (V, 8, q5) VV x We+-( V, 8, $) Vq5 x VV+CV8 x V$. 

F I, Y 227 
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The condition V - u = 0 gives 
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which implies that  $ and @ can be chosen such that C = C, - Qj - a, $, where C, is 
a constant. Regularity of the velocity at the axis requires C, = 0. Therefore, the 
velocity field can be written in the form given by (A 11). 

The Hamiltonian nature of streamline flow is transparent in the representation 
(A 11)  (Cary & Littlejohn 1983; Dewar 1985). The trajectory of a streamline is 
defined by the equation 

ax 
- x u = o ,  
d7 

where 7 is a time-like variable that labels points along a streamline. This means that 
along a streamline 

(A 15a, b)  
d a  U . V O  d e  - u.ve 
G - W '  &i-Zg' 

- 

Using the representation (A 11), the Hamilton's equations for stream-lines are 

(A 16a, b)  

where the poloidal angle 0 is the canonical coordinate, the toroidal flux @ is the 
canonical momentum, the toroidal angle $ is the time-like coordinate and $ is the 
Hamiltonian. If a symmetry exists, the Hamiltonian has one degree of freedom, and 
the system is integrable. The velocity field can then be written in the form given by 
(A 3), where the rotational transform corresponds to  the frequency in the action- 
angle coordinates well known in classical mechanics. 

Appendix B. Bracket notation 

of useful properties that are reviewed here. The bracket is defined as 

which is equivalent to 

where @, 01 and fl define the coordinate system. [A,  B]  behaves like a Poisson bracket, 
in that  it is bilinear, and has the properties 

The bracket notation is introduced for mathematical convenience, with a number 

[A ,  B ]  = $V(S.VA x V B ,  (B 1) 

[ A , B ]  = a,Aa,B-a,Aa,B, (B 2) 

[ A , B ]  = - [ B , A ] ,  (B 3) 

(B 4) 

(B 5) 

[A ,  [B, Cll + [B, [C,  A11 + [C,  [A 9 4 1  = 0, 

[AB, C]  = A[B, C] + [A,  C] B,  

where (B 4) is the Jacobi identity, and (B 5) is the Leibniz rule. The bracket also has 
the property 

where 
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The partial differential equation for f defined by 

[Ilr,f 1 = K ,  
where Ilr and K are known functions, can be solved by integrating along the 
characteristics. Equation (B 8) has the solution 

where f,, is a free function which is a solution to the homogeneous equation 
[IlrLf 1 = 0. 
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